Rickover and the Nuclear Navy-Francis Duncan 1990 Briefly describes Admiral Rickover's complex personality, explains how he helped create the nuclear Navy, and traces the development of nuclear powered vessels.

Admiral Rickover and the Nuclear Navy-Heather M. David 1970 A biography of the American naval officer who pioneered in developing the Nautilus, the nuclear-powered submarine.

Rickover: The Struggle for Excellence-Francis Duncan 2021-06-17 Admiral Hyman G. Rickover (1900-1986), the “Father of the Nuclear Navy,” was born Chaim Godalia Rickover in eastern Poland to Jewish parents. Fleeing Russian antisemitic pogroms in 1906 with his mother and sister, he joined his father, who had traveled to America since 1897, in New York City. The family soon moved to Chicago where Rickover’s father worked as a tailor. Congressman Adolph Sabath, a Czech Jewish immigrant, nominated Rickover for appointment to the US Naval Academy. Rickover passed the entrance exams and entered the Academy in 1918. After sea duty on several ships and submarines, he served as head of the Electrical Section in the Bureau of Ships and in 1946, was sent to Oak Ridge to start working on nuclear naval propulsion reactors, a program he would lead for the rest of his career. He became a four-star admiral in 1973. Rickover’s work on nuclear propulsion had a profound effect on the post-World War II world and on the development of civilian nuclear reactors for electricity generation. His demand for excellence and accountability was felt far beyond the
naval community, yet few other flag officers in the US Navy have been so controversial. Drawing on the admiral’s private papers and the personal insights of friends and family members, this biography examines Rickover’s extraordinary naval career and his private life. “Francis Duncan, in his long-awaited full biography of Hyman Rickover, achieves that difficult dual goal of close personal insight and honesty of distance... Duncan details Rickover’s many controversies, his towering rages, and his contempt for tradition, bureaucracy, and stupidity... a very readable cruise through the life of a notorious curmudgeon who, after all, served his country well and had a major impact on the ships of the U.S. Navy, on the engineering profession, and on the development of nuclear power in the United States.” — Rodney Carlisle, The Journal of American History “This fine treatment of a remarkable man is highly recommended.” — Malcolm Muir, Jr., Technology and Culture “Francis Duncan is uniquely qualified to write the biography of Admiral Hyman G. Rickover... He is the only person to whom Admiral Rickover ever made himself available for interviews and allowed use of his personal papers, including the letters between himself and his first wife, Ruth... This is an enjoyable book, especially for the thousands who served, or serve now, in the nuclear programs, civilian or military. It is also an important addition to the history of a man who was one of the giants of the twentieth-century United States.” — Robert Loewenthal, The Journal of Military History “Victorious in his struggle for excellence, Rickover’s personal baton of highly disciplined professionalism was passed without a hitch to those he had selected, educated, and trained to run nuclear power plants safely and efficiently. We still feel his presence; his legacy endures. This book does him long-awaited justice.” — Admiral James D. Watkins, USN (Ret.), Chief of Naval Operations, 1982-86 “Impressively researched, insightful, and readable. Duncan captures the Rickover behind the myths and sea stories. This account of his remarkable life, an only-in-America story, will appeal to a wide audience
— midshipman to CEO.” — Admiral Bruce DeMars, USN (Ret.), Director, Navy Nuclear Propulsion, 1988-96 “This excellent book offers insights not available to previous authors who did not enjoy Francis Duncan’s close association with Rickover and his family. Particularly useful are early chapters that define the character of the man.” — Admiral Kinnard R. McKee, USN (Ret.), Director, Navy Nuclear Propulsion, 1982-88 “This is the authentic biography of Hyman Rickover, one of the most influential persons in naval history and in the creation of an international civilian nuclear power industry. Duncan has given us a national treasure that is both authoritative and enjoyably readable. There’s something in it for everyone.” — Dr. Theodore Rockwell, former technical director of Rickover’s naval reactors program “Rickover: The Struggle for Excellence is an original and absolutely fundamental contribution both to naval history and to a general understanding of nuclear power development. It is very objective and accessible... There is no comparable book.” — Dr. Gary Weir, Naval Historical Center “I believe Rickover: The Struggle for Excellence by Francis Duncan is the best biography of Admiral Rickover.” — Robert Rickover, son of Admiral Rickover

Rickover-Thomas B. Allen 2007 Hyman G. Rickover was not long removed from his Jewish roots in Poland when he graduated from the U.S. Naval Academy in 1922. After a respectable career spent mostly in unglamorous submarine and engineering billets, he took command of the U.S. Navy's nuclear propulsion program and revived his career, being retired--involuntarily--some thirty years later in early 1982. He was not only the architect of the nuclear Navy but also its builder. In the process, he erected a network of power and influence that rivaled those who were elected to high office, and that protected him from them when his controversial methods became objectionable or, as critics would suggest, undermined the nation's vital interests. Authors Thomas B. Allen and Norman Polmar, whose full-length biography of Rickover (in manuscript in 1981) was consulted by
the Reagan Administration during the decision to remove him from active duty, are eminently qualified to write an essential treatment on the controversial genius of Admiral Rickover. Against the Tide-Dave Oliver 2014-11-15 Admiral Hyman Rickover personally revolutionized naval warfare and altered the outcome of the Cold War. Concurrently he drove innovation into American industry -- which in the decades since has proven to be a wellspring of power for American technology. As a touchstone of his success, during Rickover’s stewardship the Russians had literally dozens of reactor accidents, but Rickover’s single-minded focus on safety protected Americans as well as and our lands from nuclear contamination. Rickover did all of this initially by the force of his own personality and eventually by insisting on radical culture change. The author had the good fortune to personally know and be involved with Admiral Rickover as well as many of the most interesting players and protagonists during much of this thirty year process of wrenching cultural upheaval. The author leaves detailed biographical details of Rickover to others, instead focusing on previously unknown historical events in which he personally participated or had unique knowledge which highlight the management and leadership principles behind Rickover’s achievements and place important events (President Eisenhower choosing nuclear submarines to counter Sputnik, development of the Polaris Fleet, the relationship of Admirals Zumwalt and Rickover, the loss of USS Scorpion, the superiority of the American submarines over the Soviet fleet, etc.) in an historical perspective. Because of his life’s work, the author is uniquely qualified to apply many of Rickover’s principles to other situations. For example, Dave well understands the particular navy culture Rickover had to destroy for the author began his own career on a diesel boat. Similarly since the author spent a decade in US industry as either the Chief Executive Officer or the Chief Operating Officer, he understands how to identify situations where Rickover’s principles can be applied to
industry circumstances. This is done at the end of each chapter in the book, thus providing a starting point for any who wish to use this source for case studies.

The Rickover Effect

1995-08-25

"A notable, anecdote-rich biography of the controversial 'father of the nuclear navy.'"—Publishers Weekly

"This thought-provoking, well-written, and stimulating book . . . is an honest tribute to a man whose greatness will one day be recognized even more than it is today."—Associated Press

"Together with Rhodes's definitive account of the race . . . to develop a nuclear bomb, these two works constitute the most important contributions to date on the history of atomic energy."—Nuclear News

"The consummate inside story of Rickover's team: how they developed nuclear power, how they worked together, and their relationships with a revered, though controversial, boss."—Captain Edward L. Beach, USN (Ret.), author of Run Silent, Run Deep

In less than a decade, Hyman G. Rickover created the world's first nuclear submarine, the USS Nautilus, and built the world's first atomic power station. His unprecedented technological achievements overcame both natural and human obstacles and gave new meaning to the concept of industrial quality control. Here is the critically acclaimed, authentic inside story, told by the man who worked at Rickover's side for fifteen years. Theodore Rockwell takes us behind the "zirconium curtain" to see the emergence of the commercial nuclear industry through the eyes of those who shaped it and to discover why Rickover provoked a storm of controversy. The Rickover Effect is a riveting tale of genius and dedication told in intimate, human terms. Theodore Rockwell is an editor and author, as well as an expert on nuclear reactors who worked with Admiral Rickover from 1949 to 1964. He served as technical director of the U.S. Naval Reactors Program from 1954 to 1964.

Against the Tide

2018-09

Against the Tide is a leadership book that illustrates how Adm.
Hyman Rickover made a unique impact on American and Navy culture. The driving force behind the Navy's nuclear submarine fleet, Rickover revolutionized naval warfare while concurrently proving to be a wellspring of innovation that drove American technology in the latter half of the twentieth-century. Rear Adm. Dave Oliver, USN (Ret.) is the first former nuclear submarine commander who sailed for the venerable admiral to write about Rickover's management techniques. Oliver draws upon a wealth of untold stories to show how one man changed American and Navy culture while altering the course of history.

Nuclear Navy 1946-1962: History of Navy's Nuclear Propulsion Program - Hyman Rickover, Nimitz, Nautilus, AEC, Nuclear Submarines, Reactors, Atoms for Peace, Thresher, Polaris Missile-Department of Defense 2017-06 This official AEC-sponsored history of the Naval nuclear propulsion program provides an authoritative account of the historic effort to develop the first atomic powered submarines and carriers under the celebrated leadership of Hyman Rickover. Subjects and topics covered include: Hyman Rickover, Nautilus, Admiral Nimitz, President Eisenhower, Walter Zinn, Argonne National Laboratory, Atomic Energy Commission, Bureau of Ships, Nuclear Submarines, Ross Gunn, Naval Research Laboratory, Rear Admiral Mills, General Electric, Babcock and Wilcox, Oak Ridge, Project Genie, Clinton Laboratories, Project Wizard, Reactors (gas cooled, water cooled, liquid metal cooled), Westinghouse, Atomic Power Laboratory, Code 390, Guppy, Tang class, Electric boat, Portsmouth, Mark I and II, Mark A and B, Aircraft Carrier, Atoms for Peace, Shippingport Atomic Power Station, Skipjack, S5W Reactor, Thresher, Polaris, Enterprise Carrier. The story told here has significance for men of affairs as well as scholars. It says much about the innovation and development of a basic new technology under the guidance of the federal government. It describes the complex relationships among the scientists who handled the basic research, the civilian and
military officials (usually technically trained engineers), who were responsible for carrying out the programs, and the contractors (usually private corporations), who built the plants, equipment, components, and ships. The study suggests both the problems raised in the process of putting a new technology to work and the techniques and procedures devised to solve these problems. In this way it provides a rare insight into the inner workings of the military and civilian governmental offices carrying out the task. Above all this history emphasizes the critical role played by individual personalities in the execution of a highly sophisticated, impersonal technological program within a large and sometimes impersonal bureaucracy.

Nuclear Navy 1946-1962 * Chapter 1 - Control of the Sea * Chapter 2 - The Idea and the Challenge * Chapter 3 - The Question of Leadership * Chapter 4 - The Structure of Responsibility * Chapter 5 - Emerging Patterns of Technical Management * Chapter 6 - Prototypes and Submarines * Chapter 7 - Toward a Nuclear Fleet * Chapter 8 - Nuclear Power Beyond the Navy * Chapter 9 - Propulsion for the Fleet * Chapter 10 - Building the Nuclear Fleet * Chapter 11 - Fleet Operation and Maintenance * Chapter 12 - The Measure of Accomplishment

Review of Naval Reactor Program and Admiral Rickover Award-United States. Congress. Joint Committee on Atomic Energy 1959 Reviews efficiency and safety of Navy nuclear reactors used to power submarines; and presents to Vice Admiral Hyman G. Rickover the Congressional Medal of Merit for his efforts in the Naval Reactor Program. Hearing was held on board U.S.S. Skipjack.

Nuclear Navy Encyclopedia - Comprehensive History of Naval Nuclear Propulsion for Submarines and Aircraft Carriers - First Atomic Subs, Hyman Rickover, Nuclear Fuel Management, Reactors-U. S. Navy 2017-01-15 Discover the fascinating stories and history of the U.S. Navy nuclear program. With five official histories and reports, this unique compilation provides a stunning, richly detailed overview of all aspects of this amazing story. Contents: Naval Nuclear Propulsion Program * Nuclear

Naval Nuclear Propulsion Program - This is a comprehensive, up-to-date survey of the U.S. Navy's nuclear propulsion program. Navy warships are deployed around the world every hour of every day to provide a credible "forward presence," ready to respond on the scene wherever America's interests are threatened. Nuclear propulsion plays an essential role in this, providing the mobility, flexibility, and endurance that today's smaller Navy requires to meet a growing number of missions. About 45 percent of the Navy's major combatants are nuclear-powered: 11 aircraft carriers, 53 attack submarines, and 18 strategic submarines (the Nation's most survivable deterrent) -- 4 of which were removed from strategic service and converted to a covert, high-volume, precision strike platform designated as SSGN. Advantages of Naval Nuclear Power * Today's Mission * Nuclear-Powered Submarines * Nuclear-Powered Aircraft Carriers * What is the Naval Nuclear Propulsion Program? * Research, Development, and Support Laboratories * Nuclear Component Procurement Organization * Nuclear Equipment Suppliers * Shipyards * Support Facilities and Tenders * Schools and Training Facilities * Headquarters * Establishment of the Program * Technical and Management Philosophy * The Training Program. * What it Means to be a Sailor in the Naval Nuclear Propulsion Program * Description of a Typical Naval Nuclear Propulsion Plant * Protection of People * Concern for the Environment * Naval Nuclear Propulsion Program Emergency Preparedness * Naval Spent Nuclear Fuel Transportation Exercises * Partnership with State and Local Officials * Naval Nuclear Propulsion Program Accomplishments * Appendix * The First Naval Nuclear Propulsion Plants * Classes of Nuclear-Powered Ships. * Operations * Special Projects * Program Locations * Program Directors -- Past and Present * Program Statistics*

Nuclear Navy
1946-1962 - This official AEC-sponsored history of the Naval nuclear propulsion program provides an authoritative account of the historic effort to develop the first atomic powered submarines and carriers under the celebrated leadership of Hyman Rickover. Rickover, Nautilus, Admiral Nimitz, President Eisenhower, Walter Zinn, Argonne National Laboratory, Atomic Energy Commission, Bureau of Ships, Nuclear Submarines, Ross Gunn, Naval Research Laboratory, Rear Admiral Mills, General Electric, Babcock and Wilcox, Oak Ridge, Project Genie, Clinton Laboratories, Project Wizard, Reactors (gas cooled, water cooled, liquid metal cooled), Westinghouse, Atomic Power Laboratory, Code 390, Guppy, Tang class, Electric boat, Portsmouth, Mark I and II, Mark A and B, Aircraft Carrier, Atoms for Peace, Shippingport Atomic Power Station, Skipjack, S5W Reactor, Thresher, Polaris, Enterprise Carrier. This history emphasizes the critical role played by individual personalities in the execution of a highly sophisticated, impersonal technological program within a large and sometimes impersonal bureaucracy. Nuclear Navy 1946-1962 * Control of the Sea * The Idea and the Challenge * The Question of Leadership * Structure of Responsibility * Emerging Patterns of Technical Management * Prototypes and Submarines * Toward a Nuclear Fleet * Nuclear Power Beyond the Navy * Propulsion for the Fleet * Building the Nuclear Fleet * Fleet Operation and Maintenance * The Measure of Accomplishment

Garde D'Haiti, 1915-34-Dave Oliver 1956-12-01 Against the Tide is a leadership book that illustrates how Adm. Hyman Rickover made a unique impact on American and Navy culture. Dave Oliver is the first former nuclear submarine commander who sailed for the venerable admiral to write about Rickover's management techniques. Oliver draws upon a wealth of untold stories to show how one man changed American and Navy culture while altering the course of history. The driving force behind America's nuclear submarine navy, Rickover revolutionized naval warfare while concurrently
proving to be a wellspring of innovation that drove American technology in the latter half of the twentieth-century. As a testament to his success, Rickover's single-minded focus on safety protected both American citizens and sailors from nuclear contamination, a record that is in stark contrast to the dozens of nuclear reactor accidents suffered by the Russians. While Rickover has been the subject of a number of biographies, little has been written about his unique management practices that changed the culture of a two-hundred-year-old institution and affected the outcome of the Cold War. Rickover's achievements have been obscured because they were largely conducted in secret and because he possessed a demanding and abrasive personality that alienated many potential supporters. Nevertheless he was an extraordinary manager with significant lessons for all those in decision-making positions. The author had the good fortune to know and to serve under Rickover during much of his thirty-year career in the Navy and is singularly qualified to demonstrate the management and leadership principles behind Rickover's success.

Nuclear Navy 1946-1962- 2014 This official AEC-sponsored history of the Naval nuclear propulsion program provides an authoritative account of the historic effort to develop the first atomic powered submarines and carriers under the celebrated leadership of Hyman Rickover. Subjects and topics covered include: Hyman Rickover, Nautilus, Admiral Nimitz, President Eisenhower, Walter Zinn, Argonne National Laboratory, Atomic Energy Commission, Bureau of Ships, Nuclear Submarines, Ross Gunn, Naval Research Laboratory, Rear Admiral Mills, General Electric, Babcock and Wilcox, Oak Ridge, Project Genie, Clinton Laboratories, Project Wizard, Reactors (gas cooled, water cooled, liquid metal cooled), Westinghouse, Atomic Power Laboratory, Code 390, Guppy, Tang class, Electric
boat, Portsmouth, Mark I and II, Mark A and B, Aircraft Carrier, Atoms for Peace, Shippingport Atomic Power Station, Skipjack, S5W Reactor, Thresher, Polaris, Enterprise Carrier. The story told here has significance for men of affairs as well as scholars. It says much about the innovation and development of a basic new technology under the guidance of the federal government. It describes the complex relationships among the scientists who handled the basic research, the civilian and military officials (usually technically trained engineers), who were responsible for carrying out the programs, and the contractors (usually private corporations), who built the plants, equipment, components, and ships. The study suggests both the problems raised in the process of putting a new technology to work and the techniques and procedures devised to solve these problems. In this way it provides a rare insight into the inner workings of the military and civilian governmental offices carrying out the task. Above all this history emphasizes the critical role played by individual personalities in the execution of a highly sophisticated, impersonal technological program within a large and sometimes impersonal bureaucracy.

Nuclear Navy 1946-1962 * Chapter 1 - Control of the Sea * Chapter 2 - The Idea and the Challenge * Chapter 3 - The Question of Leadership * Chapter 4 - The Structure of Responsibility * Chapter 5 - Emerging Patterns of Technical Management * Chapter 6 - Prototypes and Submarines * Chapter 7 - Toward a Nuclear Fleet * Chapter 8 - Nuclear Power Beyond the Navy * Chapter 9 - Propulsion for the Fleet * Chapter 10 - Building the Nuclear Fleet * Chapter 11 - Fleet Operation and Maintenance * Chapter 12 - The Measure of Accomplishment

The Atomic Submarine and Admiral Rickover-Clay Blair 1954
Tales of a Cold War Submariner-Dan Summitt 2004-08-24 Following the Second World War, Dan Summitt cruised the China Sea in a destroyer. During the Cold War, he worked with Adm. Hyman Rickover and commanded two nuclear submarines. In Tales of a Cold War Submariner, Summitt tells the dramatic story of his military life on and under the sea, focusing on his experiences with nuclear submarines and Admiral Rickover, “the father of the nuclear navy.” His stories, anecdotes, and detailed descriptions bring this tense era to life for the reader. Summitt recounts his service as commander of the USS Seadragon on its secret mission to the North Pole, where he rendezvoused with the USS Skate to conduct experiments under the ice. Following a posting to Naval Reactors, Summit then took command of the USS Alexander Hamilton, one of forty-one Polaris submarines in the U.S. fleet. A submarine of this class was 425 feet long and carried sixteen Polaris missiles, each 35 feet high and weighing 35,000 pounds. Summitt takes the reader on a tour of the spacious vessel, describing everything from its living quarters to practice missile launches to the coveralls worn by the crew. He recounts Christmas at the Duke of Argyle’s castle, discusses the difficulties of steering with a single propeller, and describes how the Alexander Hamilton was almost lost because of a faulty needle piston in the snorkel head valve cylinder, a reminder that even the most sophisticated machine can be undone by a simple mechanical failure. In the best tradition of naval literature, Summitt’s memoir offers a first-person view of life in the navy during a crucial period in our history. Readers will enjoy weighing anchor with Captain Summitt, and scholars will find his memoir an important contribution to the literature on the U.S. Navy and the Cold War.
核子潛艦之旅-Tom Clancy 1994
Naval Nuclear Propulsion Program--1974-United States. Congress. Joint Committee on Atomic
Energy 1975
Six Men Out of the Ordinary-Solly Baron Zuckerman 1992 In this fascinating new book Lord Zuckerman focuses on six exceptional men, British and American, with whom he became closely associated during his very active working life. These, in order of appearance, are: two nuclear physicists, the Nobel Laureates Patrick Blackett and Isidor Rabi; two air chiefs, Lord Tedder and General Spaatz; and two admirals, Lord Mountbatten and Admiral Rickover, founder of the US nuclear navy. They were contrasting characters. Arthur Tedder, for example, a brilliant tactician and strategist, was quiet, reserved, cultivated. His American counterpart, Tooey Spaatz, an addictive poker-player who enjoyed his whisky, had a disarming, unpompous manner and a delightful sense of humour. Dickie Mountbatten was the quintessential admiral, tall, handsome and radiating confidence. While Rick Rickover owed his aggressive behaviour largely to the anti-Semitism he suffered when attending the US Naval Academy at Annapolis. The author enjoyed the trust and friendship of each of these men, among others, through his unique contacts in very different spheres of activity: the Bohemian Bloomsbury set in London; the world of scientists and academics; his scientific advisory posts in Combined Operations during the war years, when he set up vital bombing-survey units; and later in his role as governmental scientific adviser. He uses his personal knowledge and special insights into his subjects to bring them vividly to life, as well as recording some of the momentous events in which they participated.

Rickover-Norman Polmar 1982 Examines the life, career, controversies, accomplishments, and blunders of the man in charge of the Navy's nuclear power program for over 30 years.
On January 3, 1961, nuclear reactor SL-1 exploded in rural Idaho, spreading radioactive contamination over thousands of acres and killing three men: John Byrnes, Richard McKinley, and Richard Legg. The Army blamed "human error" and a sordid love triangle. Though it has been overshadowed by the accident at Three Mile Island, SL-1 is the only fatal nuclear reactor incident in American history, and it holds serious lessons for a nation poised to embrace nuclear energy once again. Historian Todd Tucker, who first heard the rumors about the Idaho Falls explosion as a trainee in the Navy's nuclear program, suspected there was more to the accident than the rumors suggested. Poring over hundreds of pages of primary sources and interviewing the surviving players led him to a tale of shocking negligence and subterfuge. The Army and its contractors had deliberately obscured the true causes of this terrible accident, the result of poor engineering as much as uncontrolled passions. A bigger story opened up before him about the frantic race for nuclear power among the Army, the Navy, and the Air Force -- a race that started almost the moment the nuclear bombs were dropped on Hiroshima and Nagasaki. The National Reactor Testing Station (NRTS), where the meltdown occurred, had been a proving ground where engineers, generals, and admirals attempted to make real the Atomic Age dream of unlimited power. Some of their most ambitious plans bore fruit -- like that of the nation's unofficial nuclear patriarch, Admiral Rickover, whose "true submarine," the USS Nautilus, would forever change naval warfare. Others, like the Air Force's billion dollar quest for a nuclear-powered airplane, never came close. The Army's ultimate goal was to construct small, portable reactors to power the Arctic bases that functioned as sentinels against a Soviet sneak attack. At the height of its program, the Army actually constructed a nuclear powered city inside a glacier in Greenland. But with the meltdown in Idaho
came the end of the Army's program and the beginning of the Navy's longstanding monopoly on military nuclear power. The dream of miniaturized, portable nuclear plants died with McKinley, Legg, and Byrnes. The demand for clean energy has revived the American nuclear power industry. Chronic instability in the Middle East and fears of global warming have united an unlikely coalition of conservative isolationists and fretful environmentalists, all of whom are fighting for a buildup of the emission-free power source that is already quietly responsible for nearly 20 percent of the American energy supply. More than a hundred nuclear plants generate electricity in the United States today. Thirty-two new reactors are planned. All are descendants of SL-1. With so many plants in operation, and so many more on the way, it is vitally important to examine the dangers of poor design, poor management, and the idea that a nuclear power plant can be inherently safe. Tucker sets the record straight in this fast-paced narrative history, advocating caution and accountability in harnessing this feared power source.

Life at the Center of the Energy Crisis-George H Miley 2013-04-30 Life at the Center of the Energy Crisis: A Technologist's Search for a Black Swan describes the story of the author's work and struggles in the field of energy research. The author's experience in the field spans from work with Admiral Rickover and the Nuclear Navy to research with NASA designing propulsion for spacecraft to travel to Mars. The book provides insights into the differences between nuclear research done during the Cold War by the two superpowers, and offers a commentary on the flaws in each system with hope for change in the future. The book also provides a look into the development of the nuclear engineering program at the University of Illinois from the author's years as a professor and an administrator. Contents:Why a “Black Swan”?Living at the Center of the Energy CrisisTimeline
and Apology

Early Days and Searching for a Starting Path

Burnable Poison Control for Nuclear Submarine Reactors

Nuclear Pulse Propagation and Fission Reactor Kinetics

Nuclear Pumped Laser (NPL) Research

Direct Electron Beam Pumped Laser

Advanced Lasers

Alpha Particle Effects in Thermonuclear Fusion Devices

Alternate Fusion Concepts

Advanced Fuel Fusion and Direct Energy Conversion

Inertial Confinement Fusion (ICF)

Inertial Electrostatic Confinement (IEC)

Fusion

Low Energy Nuclear Reactions (LENR)

Hydrogen Economy and Fuel Cells

Fusion Propulsion and Space Colonization

Nuclear Batteries

Computation and Theory

Nuclear Power Plant Safety and the Illinois Low-Level Waste Site

Teaching, Education, and University Administration

Creation of a Small Company, NPL Associates, Inc.

Where Am I in the Search? What Have I Found?

Concluding Comments

Timeline of Events

Readership: Undergraduates and PhDs, as well as anyone in the general public interested in the history of the field.

Keywords: Burnable Poison Control; Nuclear Submarine Reactors; Neutron Pulse Propagation; Fission Reactor Kinetics; Nuclear Pumped Lasers; Direct Electron Beam Pumped Laser; Advanced Lasers; Alpha Particle Effects in Thermonuclear Fusion Devices; Alternate Fusion Concepts; Advanced Fuel Fusion; Direct Energy Conversion; Inertial Confinement Fusion; Inertial Electrostatic Confinement Fusion; Low Energy Nuclear Reactions (LENR); Hydrogen Economy and Fuel Cells; Fusion Propulsion; Space Colonization; Nuclear Batteries; Nuclear Power Plant Safety Board; Illinois Low-level Waste Site; Energy Studies

Reviews: "Miley includes pictures and graphics to set the historical tone and illustrate scientific concepts, both of which add to his colorful narrative. Readers with an interest in the principles or the history of nuclear energy, or of its future in post-Cold War era — will find much to interest them in this book." (See Full Review) Inside Illinois Naval Nuclear Propulsion Program, 1975-United States. Congress. Joint Committee on Atomic
Energy. Subcommittee on Legislation 1975
Review of Naval Reactor Program and Admiral Rickover Award--United States. Congress. Joint Committee on Atomic Energy 1959 Reviews efficiency and safety of Navy nuclear reactors used to power submarines; and presents to Vice Admiral Hyman G. Rickover the Congressional Medal of Merit for his efforts in the Naval Reactor Program. Hearing was held on board U.S.S. Skipjack.
Nuclear Submarine Disasters--Chris Higgins 2002 Presents a history of disasters involving nuclear submarines, including the Thresher, the Scorpion, and the Kursk, and explores how the investigation of these accidents can lead to safety reform.
Power Shift--Dan Gillcrist 2006 Power Shift is the first comprehensive account of the US Navy's Submarine Force transition from diesel to nuclear power. It represented the biggest, most costly and disruptive technological change in naval history. This was all done against the backdrop of intense Cold War operations where US submarines played a critical role in maintaining the peace. The story is told by the people who were part of the power shift. From seamen to admirals they tell the stories of how the technological and cultural changes affected them.
Naval Nuclear Propulsion Program, 1967-68-United States. Congress. Joint Committee on Atomic Energy 1968 Reviews budget planning and military justification for nuclear powered naval ships and
DOD objections to Navy development and construction plans for nuclear powered surface ships. Also reviews nuclear submarine propulsion and electrical generating equipment procurement problems due to expanding commercial markets. Classified material has been deleted. A chronological summary concerning nuclear propulsion for surface warships is contained on p. 177-244. Appendixes are contained on p. 245-497.

America's Secret Submarine: An Insider's Account of the Cold War's Undercover Nuclear Sub-Lee Vyborny 2015-09-14

It was impossibly expensive, extraordinarily dangerous, and completely unarmed. The U.S. Navy’s state-of-the-art NR-1 nuclear powered submersible was the Cold War’s most closely guarded - and revolutionary - secret. In 1966, after the U.S. almost lost a hydrogen bomb off the coast of Spain, Admiral Hyman Rickover - father of the nuclear navy - outmaneuvered Congress and steamed full speed ahead on his brainchild: a spy mission and deep ocean recovery submarine with a miniature nuclear reactor that could navigate the ocean floor for weeks at a time. But operating at such depths would also cut off the crew should rescue become necessary. Now, an original crew member revels the true story of America’s Secret Submarine - the triumphs and near disasters of the super-secret NR-1 are told through first person accounts by those who alternately suffered through, and exalted in, its construction and initial operation - and then dared go where no men had gone before.

Admiral Hyman Rickover-Marc Wortman 2022-02-08

100,000,000 Miles Safely Steamed on Nuclear Power- 1994

Naval Nuclear Propulsion Program-United States. Congress. Joint Committee on Atomic Energy 1966 Reviews progress of nuclear propulsion research and application of technical developments to
naval construction program.
Yeah, reviewing a ebook rickover and the nuclear navy the discipline of technology could grow your near friends listings. This is just one of the solutions for you to be successful. As understood, ability does not suggest that you have astonishing points.

Comprehending as skillfully as arrangement even more than further will meet the expense of each success. next-door to, the pronouncement as capably as sharpness of this rickover and the nuclear navy the discipline of technology can be taken as capably as picked to act.

Related with Rickover And The Nuclear Navy The Discipline Of Technology:

Exam Prep: Hazardous Materials Awareness And Operations